研究業績リスト

梅田 典晃

論文

 

査読付き論文

 

1.  R. Suzuki and N. Umeda, Blow-up at space infinity for a quasilinear parabolic equation with space-dependent reaction, to appear in Hokkaido Mathematical Journal.

2.  N. Umeda, On vanishing at space infinity for a semilinear heat equation with absorption, Electronic Journal of Differential Equations, 2014 (2014), No. 29, 1-19.

3.  M.-H. Giga, Y. Giga, T. Ohtsuka and N. Umeda, On behavior of signs for the heat equation and a diffusion method for data separation, Communications on Pure and Applied Analysis, 12 (2013), no. 5, 2277-2296.

4.  T. Igarashi and N. Umeda, Existence of global solutions in time for reaction-diffusion Systems with inhomogeneous terms in cones, Hiroshima Mathematical Journal, 42 (2012), 267-291.

5.  R. Suzuki and N. Umeda, Blow-up of solutions of a quasilinear parabolic equation, Proceedings of the Royal Society of Edinburgh, Section: A Mathematics 142A (2012), 425-448.

6.  M. Shimojo and N. Umeda, Blow-up at space infinity for solutions of cooperative reaction-diffusion systems, Funkcialaj Ekvacioj 54 (2011), 315-334.

7.  Y. Giga, Y. Seki and N. Umeda, On decay rate of quenching profile at space infinity for axisymmetric mean curvature flow, Discrete and Continuous Dynamical System 29 (2011) no. 4, 1463-1470.

8.  Y. Giga, Y. Seki and N. Umeda, Mean curvature flow closes open sets of noncompact surface of rotation, Communications in Partial Differential Equations34(2009), no 11, 1508-1529.

9.  T. Igarashi and N. Umeda, Nonexistence of global solutions in time for reaction-diffusion systems with inhomogeneous terms in cones, Tsukuba J. Math. 33 (2009), no. 1, 131-145.

10.         Y. Giga and N. Umeda, On instant blow-up for semilinear heat equation with growing initial data, Methods Appl. Anal. 15 (2008), no. 2, 185-196.

11.         Y. Seki, R. Suzuki and N. Umeda, Blow-up directions for quasilinear parabolic equations, Proc. Roy. Soc. Edinburgh Sect. A Math. 138 (2008), 379-405.

12.         T. Igarashi and N. Umeda, Existence and nonexistence of global solutions in time for a reaction-diffusion system with inhomogeneous terms, Funkcialaj Ekvacioj, 51 (2008), 17-37.

13.         Y. Giga and N. Umeda, Blow-up directions at space infinity for solutions of semilinear heat equations, Bol. Soc. Parana. Mat. (3) 23 (2005), no. 1-2, 9-28.

14.         Y. Giga and N. Umeda, On blow-up at space infinity for semilinear heat equations, J. Math. Anal. Appl. 316 (2006), no. 2, 538-555.

15.         N. Umeda, Existence and nonexistence of global solutions of a weakly coupled system of reaction-diffusion equations, Communications in Applied Analysis 10 (2006), no. 1, 57-78.

16.         Y. Tonegawa, N. Umeda, T. Hayakawa and T. Ishibashi, Evaluation of data in terms of two-dimensional random walk model: The microsomal NADH-cytochrome b5 reductase:cytochrome b5 interaction, Biomedical Research 26 (2005), 217-222.

17.         N. Umeda, Large time behavior and uniqueness of solutions of a weakly coupled system of reaction-diffusion equations, Tokyo J. Math. 26 (2003).

18.         N. Umeda, Blow-up and large time behavior of solutions of a weakly coupled system of reaction-diffusion equations, Tsukuba J. Math. 27 (2003).

 

 

その他の論文

 

1.  N. Umeda, On instant blow-up for quasilinear parabolic equations with growing initial data, RIMS Kokyuroku 1640 (2009), 164-171.

2.  N. Umeda, Blow-up at space infinity for nonlinear heat equations, RIMS Kokyuroku 1588 (2008), 135-145.

3.  Y. Giga, Y. Seki and N. Umeda, Blow-up at space infinity for nonlinear heat equation, Recent Advance in Nonlinear Analysis (eds. M. Chipot, et.al.) 77-94, World Scientific New Jersey, 2007.

4.  Y. Giga and N. Umeda, On blow up at space infinity for semilinear heat equations, Acta Mathematica Universitatis Comenianae 76 (2007), 63-67.

5.  梅田典晃, 反応-拡散方程式の大域解と爆発解について, 北海道大学数学講究録 92 (2005).

6.  梅田典晃、Blow-up, existence and uniqueness of solutions of a weakly coupled system of reaction-diffusion equation, 博士論文(理学), 東京都立大学, 理博第1083 (2003).

7.  梅田典晃、反応-拡散系の爆発問題と時間経過に伴う漸近挙動、修士論文(理学)、東京都立大学 (1999).



戻る