研究業績リスト
梅田 典晃
論文
査読付き論文
1. R. Suzuki and N. Umeda, Blow-up at space infinity for a quasilinear
parabolic equation with space-dependent reaction, to appear in Hokkaido
Mathematical Journal.
2. N. Umeda, On vanishing at space infinity for a semilinear
heat equation with absorption, Electronic Journal of Differential
Equations, 2014 (2014), No. 29, 1-19.
3. M.-H. Giga, Y. Giga, T. Ohtsuka
and N. Umeda, On behavior of signs for
the heat equation and a diffusion method for data separation,
Communications on Pure and Applied Analysis, 12 (2013), no. 5, 2277-2296.
4. T. Igarashi and N. Umeda, Existence of global solutions in time for
reaction-diffusion Systems with inhomogeneous terms in cones, Hiroshima
Mathematical Journal, 42 (2012),
267-291.
5. R. Suzuki and N. Umeda, Blow-up of solutions of a quasilinear
parabolic equation, Proceedings of the Royal Society of Edinburgh, Section:
A Mathematics 142A (2012), 425-448.
6. M. Shimojo and N.
Umeda, Blow-up at space infinity for
solutions of cooperative reaction-diffusion systems, Funkcialaj
Ekvacioj 54
(2011), 315-334.
7. Y. Giga, Y. Seki and N. Umeda, On decay rate of quenching profile at space
infinity for axisymmetric mean curvature flow, Discrete and Continuous
Dynamical System 29 (2011) no. 4, 1463-1470.
8. Y. Giga, Y. Seki and N. Umeda, Mean curvature flow closes open sets of
noncompact surface of rotation, Communications in Partial Differential
Equations、34(2009), no 11, 1508-1529.
9. T. Igarashi and N. Umeda, Nonexistence of global solutions in time for
reaction-diffusion systems with inhomogeneous terms in cones, Tsukuba J.
Math. 33 (2009), no. 1, 131-145.
10.
Y.
Giga and N. Umeda, On instant blow-up for
semilinear heat equation with growing initial data,
Methods Appl. Anal. 15 (2008), no.
2, 185-196.
11.
Y.
Seki, R. Suzuki and N. Umeda, Blow-up
directions for quasilinear parabolic equations, Proc. Roy. Soc. Edinburgh
Sect. A Math. 138 (2008), 379-405.
12.
T.
Igarashi and N. Umeda, Existence and
nonexistence of global solutions in time for a reaction-diffusion system with
inhomogeneous terms, Funkcialaj Ekvacioj, 51 (2008),
17-37.
13.
Y.
Giga and N. Umeda, Blow-up directions at
space infinity for solutions of semilinear heat
equations, Bol. Soc. Parana. Mat. (3) 23
(2005), no. 1-2, 9-28.
14.
Y.
Giga and N. Umeda, On blow-up at space
infinity for semilinear heat equations, J. Math.
Anal. Appl. 316 (2006), no. 2, 538-555.
15.
N.
Umeda, Existence and nonexistence of
global solutions of a weakly coupled system of reaction-diffusion equations,
Communications in Applied Analysis 10
(2006), no. 1, 57-78.
16.
Y. Tonegawa, N. Umeda, T. Hayakawa and T. Ishibashi, Evaluation of data in terms of two-dimensional
random walk model: The microsomal NADH-cytochrome b5 reductase:cytochrome
b5 interaction, Biomedical Research 26
(2005), 217-222.
17.
N.
Umeda, Large time behavior and uniqueness
of solutions of a weakly coupled system of reaction-diffusion equations,
Tokyo J. Math. 26 (2003).
18.
N.
Umeda, Blow-up and large time behavior of
solutions of a weakly coupled system of reaction-diffusion equations,
Tsukuba J. Math. 27 (2003).
その他の論文
1. N. Umeda, On instant blow-up for quasilinear parabolic equations with growing
initial data, RIMS Kokyuroku 1640 (2009), 164-171.
2. N. Umeda, Blow-up at space infinity for nonlinear heat equations, RIMS Kokyuroku 1588
(2008), 135-145.
3. Y. Giga, Y. Seki and N. Umeda, Blow-up at space infinity for nonlinear heat
equation, Recent Advance in Nonlinear Analysis (eds. M. Chipot,
et.al.) 77-94, World Scientific New Jersey, 2007.
4. Y. Giga and N. Umeda, On blow up at space infinity for semilinear
heat equations, Acta Mathematica Universitatis Comenianae
76 (2007), 63-67.
5. 梅田典晃, 反応-拡散方程式の大域解と爆発解について, 北海道大学数学講究録 92号 (2005).
6. 梅田典晃、Blow-up, existence and uniqueness of solutions
of a weakly coupled system of reaction-diffusion equation, 博士論文(理学),
東京都立大学, 理博第1083号 (2003).
7. 梅田典晃、反応-拡散系の爆発問題と時間経過に伴う漸近挙動、修士論文(理学)、東京都立大学 (1999).